SOAL DAN PEMBAHASAN VEKTOR
1. Diberikan dua buah vektor gaya yang sama besar masing-masing vektor besarnya adalah 10 Newton seperti gambar berikut.
Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan besar (nilai) resultan kedua vektor!
Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan besar (nilai) resultan kedua vektor!
Pembahasan
Resultan untuk dua buah vektor yang telah diketahui sudutnya.
Dengan F1 = 10 N, F2 = 10 N, α adalah sudut antara kedua vektor (α = 60°). dan R adalah besar resultan kedua vektor.
Sehingga:
2. Dua buah vektor masing-masing F1 = 15 satuan dan F2 = 10 satuan mengapit sudut 60°.
Tentukan arah resultan kedua vektor!
Pembahasan
Langkah pertama tentukan dulu besar resultan vektornya:
Yang dimaksud arah resultan adalah sudut β pada gambar di bawah:
Dengan rumus sinus:
diperoleh arah resultan:
3. Dua buah vektor kecepatan P dan Q masing-masing besarnya 40 m/s dan 20 m/s membentuk sudut 60°.
Tentukan selisih kedua vektor tersebut!
Pembahasan
Menentukan selisih dua buah vektor yang diketahui sudutnya:
Menentukan selisih dua buah vektor yang diketahui sudutnya:
Sehingga
4. Dua buah vektor gaya masing – masing 8 N dan 4 N saling mengapit sudut 120°. Tentukan besar resultan kedua vektor tersebut!
Pembahasan
Data:
F1 = 8 N
F2 = 4 N
α = 120°
R = ........
Seperti soal pertama hanya berbeda sudut antaranya, dengan rumus yang sama:
Diperoleh hasil
Catatan rumus:
cos (180° − α) = − cos α
Sehingga untuk nilai cos 120°:
cos 120° = cos (180° − 60°) = − cos 60° = − 1/2
5. Perhatikan gambar berikut!
Jika satu kotak mewakili 10 Newton, tentukan resultan antara kedua vektor!
Pembahasan
Cari jumlah resultan pada sumbu x dan sumbu y, cukup dengan menghitung kotak dari masing-masing vektor, F1 adalah 30 ke kanan, 40 ke atas, sementara F2 adalah 50 ke kanan, 20 ke atas, kemudian masukkan rumus resultan:
6. Diberikan 3 buah vektor F1=10 N, F2 =25 N dan F3=15 N seperti gambar berikut.
Tentukan:
a. Resultan ketiga vektor
a. Resultan ketiga vektor
b. Arah resultan terhadap sumbu X
[Sin 37° = (3/5), Sin 53° = (4/5)]
[Cos 37° = (4/5), Cos 53° = (3/5)]
Pembahasan
a. Ikuti langkah-langkah berikut:
1. Uraikan semua vektor ke sumbu x dan sumbu y (kecuali vektor yang sudah lurus pada sumbu x atau y seperti F2). Lihat gambar di bawah!
2. Cari jumlah vektor pada sumbu x ( kanan +, kiri -)
3. Cari jumlah vektor pada sumbu y (atas +, bawah -)
4. Masukkan rumus resultan
Vektor yang dalam perhitungan selanjutnya tidak digunakan lagi karena sudah diuraikan tadi, dihapus saja, agar kelihatan lebih bersih, sisanya seperti ini:
Jumlah komponen vektor-vektor pada sumbu x dan y :
b. Mencari sudut yang terbentuk antara resultan vektor R dengan sumbu x
tan θ = ΣFy /ΣFx
tan θ = −7/−1 = 7
θ = arc. tan 7 = 81,87°
Jumlah komponen vektor-vektor pada sumbu x dan y :
b. Mencari sudut yang terbentuk antara resultan vektor R dengan sumbu x
tan θ = ΣFy /ΣFx
tan θ = −7/−1 = 7
θ = arc. tan 7 = 81,87°
Sumber: http://fisikastudycenter.com